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Logarithmic Finite-Size Corrections in the 
Three-Dimensional Mean Spherical Model 
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The finite-size scaling prediction about logarithmic corrections in the free energy 
arising from corners in the geometry of the system is tested on the three- 
dimensional mean spherical model. The general case of boundary conditions 
which are periodic in d '  ~> 0 dimensions and free or fixed in the remaining 3 - d '  
dimensions is considered. Logarithmic and double-logarithmic size corrections 
stemming from corners, edges, and surfaces are obtained. 
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1. I N T R O D U C T I O N  

One of the fundamental predictions of finite-size scaling theory ~1'2~ for 
systems confined to a fully finite geometry with real boundaries is the 
appearance of a universal logarithmic term in the expansion for the free 
energy density f at the bulk critical point T= T~: 

d 
(kTc)-I T �9 f (  c ,L)=L-aY(O)+uL-dlnL+ ~ L kg~k)(Tc) 

k=O 
(1.1) 

Here k is the Boltzmann constant, and L is the linear size of the system, 
which for simplicity is assumed to occupy a hypercubic region of volume 
L a, d being the space dimensionality. The first term in the right-hand side 
of Eq. (1.1) stems from the universal finite-size scaling function Y(tLl/V), 
where t= (T-Tc)/Tc and v is the scaling exponent for the correlation 
length; the second term has a universal amplitute u which may depend on 
the boundary conditions; the terms L-kg~)(Tc) originate from the regular 
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part of the free energy density and describe contributions from the bulk 
( k =  0), surfaces ( k =  1), edges (k = 2,.., d -  1), and corners (k = d). 

The result (1.1) for d =  2 has beed derived from conformal theory. (3) 
For general d, Privman (2) has argued that the term uL a In L is due to a 
resonance between the universal (9(L -d) contribution and the corner 
6 (L-d)  nonuniversal contribution; see also ref. 4. 

There are a few exactly solvable models at d >  2 which allow one 
to test the above prediction. Gelfand and Fisher (5'6) have obtained 
logarithmic finite-size corrections to the free energy AF~j ~ in the small-block 
limit of a d-dimensional Gaussian-type model under different boundary 
conditions (z). However, the fact that such corrections were found to exist 
even under periodic boundary conditions has no explanation by conformal 
theory (3) or finite-size scaling arguments. (2) Similarly, the asymptotic 
number of a finite set of Hamiltonian walks on two-dimensional Manhatten 
lattices studied,by Duplantier and David (7/ exhibits size factors under both 
free and periodic boundary conditions. A related d-dimensional model is 
the constrained monomer-dimer model (CMD) (see ref. 8 and references 
therein), which is critical in the limit of infinite dimer activity. The 
logarithmic size contributions in the free energy Fd, d, of the CMD model 
have been obtained ~8) under boundary conditions which are periodic in 
d'~> 0 dimensions and free in the remaining d - d '  dimensions. The term 
21-d In L has been identified to stem from the 2 d corners of the system with 
block geometry and fully free boundaries by considering the difference in 
the free energies Fd, 0 --  Fa, d, with d' >~ 1. 

In ref. 9 we have used a technique similar to the one used in ref. 8 to 
study the logarithmic finite-size corrections AF(,~) d, of the d-dimensional 
mean spherical model under free boundary conditions in d - d '  dimensions 
and periodic boundaries in d'>~ 0 dimensions. The critical behavior has 
been described in terms of the ratio L/~L, where ~c is the correlation length 
of the finite system. The main results obtained in ref. 9 are as follows. 

1. In the case of fully periodic boundary conditions, i.e., when d =  d', 

( ln(L/~t ) ,  L/~L ~ 0 
AF ~~ ~ 0, L/~ L = r (1.2) 

! 

( O, U ~ L - '  

Therefore, a logarithmic contribution appears only when L/~L--+ 0 as 
L ~ ~ .  Standard finite-size analysis of the mean spherical constraint shows 
that this is the ease of dimensions d equal to or higher than the upper 
critical one d~ = 4. Then, (1~ 

~(ln L) I/4, d =  4 (1.3) 
~L/L OC ~L(d_4)/4, d > 4  
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which implies 

- ~ ln  In L, d = 4  

de-- 41n L d>4 
(1.4) 

In the scaling regime, 2 < d < 4 ,  one has L/~ = (9(1) and therefore no 
terms proportional to In L appear in the free energy. 

2. In the case of fully free boundary conditions, i.e., when d ' =  0, 

( -  2 a In L + ln(L/~L), 

dF(~ -- ~ - 2 - a l n  L, 

( - 2 - a  In ~L + d2 -aL/~L, 

L / ~  ~ 0 

L/  G, = (9(1) (1.5) 

Therefore, a logarithmic contribution appears in all cases when 
~L~OO as L ~  oe. 

3. In the case of free boundaries in d - d ' > ~ l  dimensions and 
periodic boundaries in d'  ~> 1, 

(ln(L/~L), L/d.L --, 0 
! 

AF(o) t O' L/~L = (9(1) (1.6) 
---- d'a'= 2-dL/~L, L/~L ~ C~, d '=  1 

I 
[ 0 ,  L/~L-+O0 , d'>~2 

Therefore, a logarithmic contribution appears only in the case when 
L/~L -~ 0 as L ~ 0% or in the special case when d' = 1 and L/~L oc In L, 
as L--.  oo. 

Unfortunately, mathematical problems kept us from considering in the 
same way the case of fixed boundary conditions. 

The aim of the present work is to complete the investigation of the 
logarithmic finite-size correction terms AF ~) in the free energy of the mean d,d' 
spherical model by including the case of fixed boundary conditions (z = 1 ). 
We use here an analytical approach similar to that of Shapiro and 
Rudnick, ~ but confine ourselves to d =  3. One of our key findings is that 
under fully fixed boundary conditions (z = 1) a new double-logarithmic 
term appears: 

AF~I)o(Tc; L) = 2-3(1 + 9zc)In L - 2 -1 In In L (1.7) 

To clarify the origin of the last term in the right-hand side of (1.7), we 
consider also geometries without corners by imposing periodic boundary 
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conditions along d ' =  i, 2, 3 dimensions. It turns out that besides the 
In L term, which is due to the corners, there are In L and In In L terms 
persisting in all cases with fixed surfaces: 

f 2-1~ In L - 2 - 1 1 n  In L, d ' = l  

A F ( 3 ' ) a , ( T c ; L ) = ~ 2 - 3 r c l n L - - 2  11n In L, d ' = 2  

L0, a ' = 3  
(1.8) 

The explanation of this fact can be sought in the fact that the critical 
finite-size correlation length behaves as ~ )  oc L lnl /2L in the presence of 
free surfaces and as 7(1) ~: L in the absence of such. ~ L  

The above results motivated a reexamination of the case of free 
boundary conditions by using the same techniques. Here we confirm and 
extend the results of our work in ref. 9. 

The paper is organized as follows. In Section 2 we give a definition of 
the model and present convenient starting expressions for the further 
investigation. The method of analysis of the mean spherical constraint and 
the free energy for a large but finite system in two critical regimes is 
described in Section 3. The results for the asymptotic behavior of the solu- 
tion of the mean spherical constraint are obtained in Section 4 separately 
for different boundary conditions: fully free; free along 3 -  d' dimensions 
and periodic along d ' =  1; 2 dimensions; fully fixed; and fixed along 3 -  d' 
dimensions and periodic along d ' =  1, 2 dimensions. The corresponding 
logarithmic corrections in the free energy are derived in Section 5. The 
paper closes with a discussion in Section 6. 

2. THE M O D E L  

We consider the ferromagnetic mean spherical model (see, e.g., 
the review in ref. 13) on a finite d-dimensional hypercubic lattice 
A a = L x L x . . .  x L E Z a of L a sites. The Hamiltonian has the form 

/3~t~(A*)({cri},~A)=--1K ~ ~,~j (2.1) 
( i , j )  

Here O' i~  1, i e A ,  are the dynamical variables, f l=  1 / k T  is the inverse 
temperature, and K is the dimensionless coupling. The summation in 
(2.1) is taken over all different pairs (i, j )  of nearest neighbors under the 
imposed boundary conditions. The dependence on the boundary conditions 
will be denoted by a superscript (z); z =  1 for fixed and z = 0  for free 
boundaries; the number of additional periodic boundaries is denoted by the 
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subscript d ' =  0, 1,..., d - 1 .  In the mean spherical ensemble the partition 
function is given by 

a,d" *~' ~ .OAdXexp --fl~(A')({X'},~A) - s  Z X~ (2.2) 
i~A 

where s is the spherical field. The canonical free energy in units of (kT)-~ ,  
F(,) try. L), is defined by the Legendre transformation d,d ' t  ~ ,  

F(a~.)a,(K; L) = sup{ - I n  7(,) ~ s; L)  - sL a } (2.3) , ~d ,d 'k*x~ 
$ 

The eigenvalues ~(') of the quadratic form in the exponent of the ~d,d' 

integrand in the right-hand side of (2.2) are well known under the 
considered sets of boundary conditions (see, e.g., ref. 5). In the case of d'  
periodic and d - d '  free boundaries we take 

w 2z~k~ K d ~zk~ 
e(O)d,d'(k; S, K) = s--  K ~ cos - ~ cos - -  (2.4) 

v = l  L v  v = d '  + l L v  

where k = {ki ..... kd}, with 

kv = 0, 1,..., L - 1, v = 1 ..... d (2.5) 

In the case of d'  periodic and d -  d'  fixed boundaries we take 

d 2~kv d rc(kv + 1) 
e(d{)w(k; s, K) = s - x  Z cos - K  ~ cos (2.6) 

1 L~ Lv + 1 v =  v = d ' + l  

with the same set (2.5) of values for kv, v = 1 ..... d. Therefore, by performing 
the integration in (2.3), one obtains, apart from a normalization constant, 

~(z) ~l~. K ) _ s L  d (2.7) --a,d,~,~,~'(') r L)--- sup ~ ... ~ In od, a,~,  S, 
s k l = O  kd=O 

Now it is convenient to replace the spherical field s by another field 2, 
defined as 

2 = 2 s / K -  2d (z = 0)) 

rc (2.8) 
2 = 2 s / K - 2 d ' - 2 ( d - d ' ) c o s - -  ( z = l )  

L + I  

Then we can write 

In ~d,a,~=,~(~) tL. s, K) = ln(K/2) + ln[2 + ~o(d~)~,(k)] (2.9) 
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where 

co(a~ ~ ( 1 - - c o s ~ ) §  
v = l  

2~k~\ co(ul)u,(k)=2 ~ 1 - c o s - - ~ ) + 2  

Next, by using the identity 

d 

E 
v = d ' + l  

d 

2 
v = d ' + l  

Brankov and Danehev 

(1 -cos ~ j )  (2.10) 

cos rc(k~ + 1)) 1 - -F~-~ +1- / (2.11) 

ln[2 +co~)a,(k)J =ln 2 + I ?  ~ e-;x{1-exp[-xc~ (2.12) 

we obtain from (2.7)-(2.12) the following representation for the singular 
part of the free energy: 

F(~) tt,'. L)=Ldsup,~(~) ~K" 2, L) (2.13) d,d'~.*~ 6 d, d", 
2 

where 

g(~) tr,'. 2, L) d,d'~.*~ 

1 l n 2 +  e 
2 x 

Here we have used the notation 

S(LP)(X)=~lk=o exp [ (1 ~-~)] l_-2x -cos (2.15) 

L~.~I i _2x  ( l_cos  ~_)] (2.16) S~)(x) = k=O exp 

z - 1 1  ( rc exp re(k+ 1 S(L1)(X) = Z - - 2 X  CO S "~-~ -- CO S ------'~)/1 j (2.17) 
k=O L + I  

Obviously, the supremum in the right-hand side of (2.13) is attained 
at a value 2 = 2L(K), which obeys the equation 

fo L -d dxe-;'~[S(LP)(x)]U'[S(L')(x)]a-d'-=K (2.18) 

Expressions (2.13)-(2.18) provide the basis of our further analysis. 
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3. T H E  M E T H O D  

We take into account that in the bulk limit L--* ~ ,  2 fixed, the 
left-hand side of (2.18) becomes(12' 14) 

o dX e-~X[e- ZXlo(2X) ] d= Wd()~) (3.1) 

where Wd(2) is the d-dimensional Watson integral, and rewrite Eq. (2.18) 
in the form 

fo L - d  dx e - ~ x [ S ~ ( x ) ]  ~' I - S ~ ( x ) ]  d "' 

fo - dx e-)~Ee Z~Io(2X)]d = K-- Wd(2) (3.2) 

By applying the Poisson summation formula (see, e.g., ref. 14) to (2.15) and 
(2.16), we obtain 

s ~ ( x )  = 
q = - - o o  

s(O)(,,~ - 
L \ ~ ! -  

where 

L f] de exp(2iTzqLe) A(P)(e, x) 

L f] de exp(2ircqLe) A(~ x) 

+ [A(~ x ) -  A(~ x)]/2 

(3.3a) 

(3.3b) 

A(P)(e, x) = exp[ -2x(1  - cos 2r~e)] (3.4a) 

A(~ x) = exp [ -2x (1  - cos ~e)] (3.4b) 

Then, following the method of Shapiro and Rudnick, (12) we divide the 
first integral over x in (3.2) into two parts, 

e L  2 

L-d  ~ dx e-~x[s~LP)(x)]a'[S(L~)(x)]a-a'=-- P(u~)d,(2; e,L ) (3.5a) 
o 0 

5 L -u dx e-Zx[S~P)(x)]U' [S~)(x)] a-e'=- Q~a~)a,(2; e, L) (3.5b) 
L 2 

where e > 0 is to be determined. 
Let us consider first the term (3.5b). For e fixed and L sufficiently 

large, due to the rapid convergence of the sums (2.15)-(2.17) we can use 
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in (3.4) the quadratic approximation of cos z about z=0 ,  which yields 
(x >1 eL 2) 

S~P~(x) ~- 1 + 2Rl(4~Zx/L 2) + ua(x; L)  - Lv(x; L)  (3.6a) 

S ~~ ~ 1 + Rx(rt2x/L 2) - Uz(X; L)  - Lv(x;  L)  - e-4x/2 (3.6b) 

where 

RI(Z ) : ~ e -zq2 
q = l  

ua ( x; L)  = e -~2~[ L/27t2x - cosech( 2~2x/L ) ] 

u2(x; L) = �89 - L/~2x]  

v(x; L ) =  (4~x)-~/2[ 1 -erf(=x~/2)] 

The expression for S~) (x )  follows from (3.6b) and the 
relationship 

S L (x)=exp 2x 1 - c o s  r.v ( ~  L ~ L +  

Hence, 

S(~)~,'~ ~ 1 + R2(rc2x/(L + 1) 2) L ~,~/  ~ 

where 

(3.7) 

exact 

(3.8) 

- exp[rc2x/(L + 1)21 [u2(x; L + 1) + (L + 1) v(x; L + 1) + e-4X/2] 

(3.9) 

R2(z) = ~ exp [ - z (q  2 -  1)] (3.10) 
q = 2  

By changing the integration variable in (3.5b), we obtain 

Q~) ~)L" L) d , d ' t  ~ ~'~ 

= eL 2-d dx exp(-2L2ex) [S(LP)(eLZx)] d' [S~)(eL2x)]  d-a' (3.11) 

From (3.6)-(3.10) we have the estimates (x>~ 1) 

S(P)(sL2x) - =  1 + (9[exp(- 4rt2~x)] (3.12a) 

S(~ = 1 + (_9 [exp(-~2~x)] (3.12b) 

S~ = 1 + (9 { e x p [ - 3 ~ x L 2 / ( L  + 1)21 } (3.12c) 
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Therefore, from (3.11) and (3.12) it follows that: 

(a) If 2L 2--. ~ as 2-- .0  and L ~  ~ ,  then 

Q(,~ t~. L ) ~ _ L - a 2 - 1 e x p ( _ e 2 L  2) (3.13) d,d,~,,~ C,, 

(b) If 2L2= (9(1) or 2L2--}0 as 2 - } 0  and L - *  oc, then 

(~) . + C(L 2 Qd, d,(2, e , L ) ~ L - Q  ' -a)  

x analytical in 2L 2 function (3.14) 

Next we consider the term (3.5a). From (3.3) and (3.4) it is clear that 
if q r 0 and L -} 0% the main contribution in the integrals over c~ comes 
from the neighborhood of c~ = 0. Therefore, in this case we can use again 
the quadratic approximation of cos z in (3.4). The remaining term with 
q = 0 can be integrated exactly. Thus, with the use of the Jacobi identity we 
obtain (0 ~< x ~< eL 2) 

S(LP)(x) ~-- Le-2~Io(2X ) + L(rcx)- 1/aRI(L2/4x ) + ul(x; L) (3.15a) 

S(~)(x) ~- Le -2Xlo(2X ) + (1 - e-4~)/2 

+ L(rcx)-~/2RI(L2/x ) - u2(x; L) (3.15b) 

Note that due to relationship (3.8) the term (3.5a) for fixed boundary 
conditions, r = 1, can be written as 

eL 2 
-a,a'~',P(~) t~. 8, L ) = L  -a e-~Xr (-P) x~ a' S(j)L+ 1] a-a" dx ~S~ ( , ]  [ ~ (x ) -  (3.16) 

Jo 
where 

1 -  cos Z-- (3.17) 

Now we evaluate the contributions in the integral (3.5a) from different 
products of the terms which enter into the right-hand sides of (3.15a) and 
(3.15b). 

1. First, we note that 

O<~ui(x;L)~(9(1)e -~2x ( i=  1, 2) (3.18) 

Therefore, the contribution from integrands containing the factors ui(x; L) 
may be estimated as (p = 1,..., d) 

~L 2 

L - P  f dxe-~oX[e 2 X l o ( 2 X ) ] d - P [ u i ( x ; L ) ] P  
~0 

= (9(L -p) x analytical in 2 function (3.19) 
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and similarly in the case of products containing as cofactors other com- 
binations of the terms e-2XIo(2X), (1-e-4X) /2 ,  and ui(x; L) with i =  1, 2. 

2. Second, we consider products containing the factors 
(~x)-l/2R~(L2/ax) with a =  1 or 4. Let us divide the integration interval 
into two parts. The integrals over [0, M]  are readily estimated, 

~ dx e-X~[e 2Xlo(2X)]a-P[(rcx )- 1/2el(Lz/ax)] p 

M 

= 0 ( 1 ) f  ~ dxx  p/2exp(-pL2/ax) 

= (9[L -2 e x p ( - p L 2 / a M ) ]  (3.20) 

To estimate the contribution from the remaining part of the interval, 
we choose M sufficiently large, so that 

M `r2 dx e-;~ 2Xlo(2X)]a-P [(~x)-l/2Rl(L2/ax)]P 

eL  2 

oc ~ dxx  a/2e-~exp(-pL2/ax) (3.21) 
~ M  

Now we have to specify the regime of 2L 2 as 2 ~ 0 and L ~ oo. 

(a) If )~L2--* ct3 as )t--,0 and L ~ o o ,  the integral in (3.21) can be 
approximated by 

;o 2 d/R- 1 dx x-e/2e -~ exp( -p2L2 /ax )  

oc 2 d/4- ~ L -d/2 exp[ - 2(p2L2/a) ~/2 ] (3.22) 

(b) If 2L2=(9(1) or 2 L Z ~ 0  as 2 ~ 0  and L ~  o% after changing the 
integration variable x ~ La/t in the right-hand side of (3.21), we obtain 

L 2-d dt t d/2-2 exp(_2L2/t_pt/a) = @(L2-d) (3.23) 

3. Finally, notice that (p = 1 ..... d) 

L P~L2dxe-~X[e-2~Io(2X)]d-P[(1--e 4~)/2]P 
" 0  

~L 2 

= (2L) p ~ dx e aX[e-2~Io(2X)]a-P 
"~0 

+ (9(L -p) x analytical in 2 function (3.24) 
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Collecting the above results, for the integral (3.5a) with v = 0  we 
obtain 

d d' 
p~O) ~ 2" a, L ) =  

d,d'k 
p = O  

dx e a:'[e-2Xlo(2X)]'t-P 

+ C(L 2 -a )+  O(L 1) (3.25) 

Turning to the case of fixed boundary conditions [see (3.16)], we note 
t h a t  J~L 2 --* O0 as 2 ~ 0 and L -o oo implies ~ L  2 ~ oo and ~ ~ 0 +, while 
2L2 = (9(1) or 2L2---~ 0 as )~---~ 0 and L ~  oo implies ~L2 = (9(t). Therefore, 
essentially repeating the steps given by (3.18)-(3.24), we obtain 

p ( 1 )  (~. L) 
d,d'~'~, ~, 

= ( 1 + L - 1 )  ~ "" [ - 2 ( L + 1 ) 3  ~ 

r.aL 2 

Xjo dxe-X~[e-2~Io(2X)]d-P+(9(L  2 d)+(9(L-1)  (3.26) 

We are ready now to study the mean spherical constraint (3.2) in the 
three-dimensional case, d =  3, under the boundary conditions specified by 
~=0 ,  1 and d ' = 0 ,  17 2. 

4. T H E  M E A N  S P H E R I C A L  C O N S T R A I N T  

We make use of the asymptotic expansion (13) 

W3(2) = Xc - 21/2/4~ + G(,)~) (4.1) 

and rewrite Eq. (3.2) at d =  3 in the form [see (3.5)] 

p~T) ~ .  L) + t ~ )  t~. L) W3(2)= K - K c + 2 1 / 2 / 4 ~ +  (9(2) (4.2) -'~ 3, d'~ , 

(i) Let us consider first the case of fully free boundary conditions, 
r = 0, d ' =  0. To proceed, we need to specify the behavior of 2L 2 as 2--* 0 
and L --* oo. 

(a) Let 2L 2 --* Go as )~ --* 0 and L ~ oo. Then we make use of (3.1) to 
obtain (p = 0, 1,..., d) 

eL 2 

dx e ~:'[e-2:'Io(2X)] a p = Wa_p(2) + (9(e -~)'L2) (4.3) 
~0 
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By inserting (4.3) in (3.25) and taking into account (3.13), we obtain that 
Eq. (4.2) at r = 0 and d ' =  0 becomes 

3Wz(2) /ZL+ 3W1(2)/4L 2 + (8ZL3) -1 + (9(L -1  ) 

= K -  Kc + 21/2/4z~ + (9(2) (4.4) 
Since (13) 

W2(2) = (1/4n)In 2 -1 + (9(1) 
(4.5) 

W1(2) = (1/2)2 -~/2 + (9(21/2) 

Eq. (4.4) can be written in the form 

(3/8x) In Z t = ( K - K c ) L + Z ~ / 2 L / 4 x + ( 9 ( Z L ) + ( 9 ( 1 )  (4.6) 

Therefore, if ( K -  Kc)L = (9(1), the solution of (4.6) is 41/2 = 3(ln L)/L,  in 
conformity with the assumption 2L 2 ~ Go as 2 ~ 0 and L ~ 0o. 

An equivalent form of Eq. (4.6) is 

- (3/4~) ln(2~/ZL) - 21/2L/4~ = ( K -  K~~ + (9(2L) + (9(1) (4.7) 

where we have introduced a shifted critical coupling 

K(O) _ r," 3(ln L)/4nL (d=  3, d'  = 0) (4.8) c,L --  ~ c  + 

Hence, if ( K -  K (~ = (9(1), the mean spherical constraint has no solution c, L 
2 = ZL --~ 0 with the assumed property 2 L L  2 ~ o0 as L ~ ~ .  

(b) Let 2L2=(9(1) or 2L2-+0 as 2 - + 0  and L ~ o o .  Obviously, for 
the integral in (3.25) with p = d =  3 one has 

8L 2 
(2L) -3 f dx e -~x -- (2L)-32-1(1  - e -~;~L2) (4.9) 

"~0 

To consider the integrals with p = 1 and p = 2, we divide the integration 
interval into two parts and notice that for any fixed M > 0, 

(2L)-P f o  dx e-~X[e-ZXlo(2x)] 3-p = (9(L -p) (4.10) 

To evaluate the integral over the remaining part of the interval, we 
choose M sufficiently large and make use of the asymptotic form of the 
modified BeSsel function: 

(2L)-P dx e-XXEe-ZXIo(2X)] 3 -P 

8L 2 
~ ( 4 ~ )  (p 3 ) / 2 ( 2 L )  P ~  d x e - ' ~ X x  (p -3 ) /2  (4.11) 

~M 
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Now, by expanding the exponent in the right-hand 
power series, we obtain (p = l)  

~L 2 

( 2L ) -~ [  dxe -a~[e -2~Io (2X)]2=(4~L) - l lnL+(9(L  -1) (4.12) 
~ M  

and (p = 2) 

gL 2 

(2L) -2 [ dx e 2Xe-2Xlo(2X ) = (9(L -~) (4.13) 
O M  

side of (4.11) into 

By inserting (4.9)-(4.13) in (3.25) and taking into account (3.14), 
we find that Eq. (4.2) at ~ = 0 and d ' =  0 becomes 

( f l~L 2 ) - i + (3/47r) In L + ( 8 2 L  2 ) - 1  [ 1 - e x p (  - -  r 2) ] 

= (K-- K~)L + 2~/2L/4x + (9(1) (4.14) 

Obviously, if ( K -  Kc)L = (9(1), this equation has no solution 2 = 2L ~ 0 
with the assumed property 2LL2= (9(1) or 2 L L 2 ~  0 as L--+ oo. A solution 
)~L = 0 ( L - z )  exists only if (K - v ( ~  L r,'(~ *~c.L) = (9(1), where *~c.L is given by (4.8). 

Summarizing the above results, we have that the solution 2 = 2L of the 
mean spherical constraint in the case of fully free boundary conditions is 

2 L ~ [ 3 ( l n L ) / L ]  2 if ( K - K c ) L = ( 9 ( 1 )  
(4.15) 

v(o) L }~L .= (fl(L -2)  if (K-- ~,,c,L) =(9(1) 

(ii) Consider now the case of 3 - d'  dimensions with free boundaries 
and d ' - -1 ,  2 dimensions with periodic boundaries. 

(a) If 2L2--+ oo as 2--+0 and L--+ oo, from (3.13), (3.25), (4.3), and 
(4.5) we obtain (4.2) in the form 

[(3 - d')/8z~] In 2 -~ = ( K -  Kc)L + ).1/2L/47r + (9()~L) + (9(1) (4.16) 

Therefore, if ( K - K J L = ( 9 ( 1 ) ,  the solution of (4.16) is ~1/2 
"~L 

(3 - d')(ln L)/L. 
Equation (4.16) has the equivalent form 

- [(3 -- d')/4~ ] ln(2i/2L) - ))/2L/4rc 

= ( K -  K~~ + (9(2L) + (9(1) (4.17) 
where 

K(O) = Kc + (3 - d')(ln L)/4gL (4.18) c, L 
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Hence, if (K-K~~ Eq. (4.17) has no solution 2=2L--+0 with 
the above assumed property 2L L2 --+ a3 as L ~ ~ .  

(b) If 2L2=(9(1) or 2 L 2 ~ 0  as 2 ~ 0  and L ~ ,  by inserting 
(4.10)-(4.!3) in (3.25) and taking into account (3.14), we find that Eq. (4.2) 
becomes 

(2L2) -1+  [ ( 3 -  d')/4rc] l n L = ( K - K c ) L + 2 1 / Z L / 4 ~ + ( 9 ( 1 )  (4.19) 

Obviously, if ( K - K c ) L =  (9(1), this equation has no solution 2 = 2 c ~ 0  
with the assumed property 2LL2= (9(1) or )~LLZ--e , 0 as L ~ ~ .  A solution 
2 r = ( 9 ( L  -2) exists only if ( K - ~ ( ~  where K (~ is given by ~ X c ,  L l ~  - -  c , L  

(4.18). 
Summarizing the above results, we find that the solution 2 = 2L of the 

mean spherical constraint in the case of 3 -  d' free and d ' =  1, 2 periodic 
boundaries is 

2 L ' ~ [ ( 3 - d ' ) l n L ) / L ]  2 if ( K - K c ) L = ( 9 ( t )  
(4.20) 

2L C(L -2) if (o) = ( K - K c ,  L)L= (9(1) 

Note that expressions (4.18) and (4.20) at d ' =  0 reduce to expressions 
(4.8) and (4.15), respectively. 

(iii) Next we consider the case of fully fixed boundary conditions, 
�9 =1,  d ' = 0 .  

(a) If 2 L 2 ~  as 2--+0 and L ~ ,  then ~ L 2 ~  and ~ 0  + as 
L ~  [see (3.17)]. Therefore, we can make use of (3.1) to obtain 
(p = 0, 1,..., d) 

o ~L2 dx e iX[e-2Xlo(2X)]d-P = Wd_p('~ ) Av (9(e -~L2) (4.21) 

Now it is convenient to use in Eq. (4.2) the expansion (4.1) in terms of 
instead of 2. Then, by inserting (4.21) in (3.26) and taking into account 
(3.13), we find that Eq. (4.2) becomes 

[ 1 + (9(L- ~)] [3 W3(~)/L -- 3 W2(~)/2L + 3 Wt(~)/4L 2 ] 

- (8~L3) - '+(9(L-1)=K-K~+~. ' /2 /4n+(9( ' ) . )  (4.22) 

With the aid of expansions (4.1) and (4.5), we can write Eq. (4.22) in the 
form 

--(3/87011+(9(L ~)] ln~ -~ 

= ( K -  K~)L + ~Y2L/4rc + (9(~L) + (9(1) (4.23) 
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Therefore, due to the opposite sign (in comparison with the case of free 
boundaries) of the surface contribution 3W2(~)/2L, if (K-Kc)L=(9(1) ,  
the mean spherical constraint (4.23) has no solution 2 = 2 L  ~ 0  with the 
property 2L L2 ~ O0 as L ~ oo. 

(b) If , tL2= (9(1) or 2L2-*0 as 2--*0 and L ~ o o ,  then ~L2=(9(1) 
and ~--*0. Since now ~ may be negative [see (3.i7)], the asymptotic 
expansion (4.1) will be used for 2 rather than for ~.. Thus, by inserting in 
(3.26) the counterparts of (4.9)-(4.13) and taking into account (3.14), we 
can write Eq. (4.2) as 

- (3/4~L)[ 1 + (9(L-1)] In L + (9(L -1) 

+ [ eL2 - 
dx e-a~[e-2Xlo(2X)] 3 -  W3(2) (1 - e-"iL2)/8~L3 + l/)~Z 3 

~0 

= K -  Kc + 21n/4~ + (9(2) (4.24) 

Now we write 
~eL 2 ^ 

dx e -~[e  2Xlo(2X)]3 = ( ~ ~ dx e ;~X[e-2~lo(2X)]3 
~ "~0 

eL 2 
+ [ dx (e -7.~ _ e-a~) [ e -2~io(2X)] 3 (4.25) 

oO 

The first integral in the right-hand side of (4.25) can be evaluated as 

W3(2)-  dxe-~~[e-2~Io(2X)] 3= W3(2)+(9(L 1) (4.26) 
L 2 

and for the second integral we have the estimate 

(9(L-2)+M[~L2dxe-XX{exp[3gZx/(L+ 1) 2] - 1 }(4gx) 3/2=(9(L-t) 

(4.27) 

Thus Eq. (4.24) reduces to 

-(3/47z) lnL+2-1L-2=(K-K, . )L+2' /2L/4rc+(9(1)  (4.28) 

If (K-K~)L=(9(1),  the solution of the above equation is 2 = 2 L ~  
47~/3L21nL; it has the property 2LL2--*0 as L ~  0% hence ~ L ~ 0  -. 
Finally we notice that if a shifted critical coupling is introduced, 

K ~ - K c -  3(ln L)/41rL (4.29) c , L  - -  

then Eq. (4.28) has a solution 2 = )t L = (9(L -2) when (K-K[.~)L)L = (9(1). 
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Summarizing the above results, we find that the solution 2 = 2L of the 
mean spherical constraint in the case of fully fixed boundary conditions is 
given by 

2L~(4~/31nL)L -2 if (K-Kc)L=(9(1) 
(4.30) 

2L = C(L -2) if (K- K~I)L)L = (9(1) 

(iv) Finally, we consider the case of 3 - d '  dimensions with fixed 
boundaries and d ' =  1, 2 dimensions with periodic boundaries. 

(a) If 2 L 2 ~  as 2 ~ 0  and L ~ ,  we cast (4.2) in the form 
[compare with (4.23)] 

- [ ( 3 - d ' ) / 8 ~ ] [ 1  + (9(L-~) ]  l n~  

= (K-Kc)L + ~mL/47r + (9(~Z) + (9(1) (4.31) 

Therefore, if ( K - K c ) L  = (9(1), the mean spherical constraint (4.31 ) has no 
solution 2 = 2c ~ 0 with the property 2eL  2 --* oo as L --* oo. 

(b) If 2L2=(9(1) or 2L2--*0 as 2--*0 and L ~  o% Eq. (4.2) can be 
written as [compare with (4.28)] 

- [ ( 3 - d ' ) / 4 z ] l n L + 2  1L-2=(K-Kc)L+ZmL/4rc+(9(1) (4.32) 

If ( K - K  c)L=(9(1),  the solution of the above equation is 
2 = 2L ~ 4 r t / (3 -  d')L 2 In L; it has the property Z / L 2 ~  0 as L ~ ~ ,  hence 
~L ~ 0 - .  If (K-K~I)L)L= (9(1), where 

K ( 1 )  = K c  - (3  - d ' ) ( l n  L )/4rcL c,Z (4.33) 

then Eq. (4.32) has a solution Z = 2L = ( 9 ( L - 2 ) .  

Summarizing the above results, we find that the solution 2 = 2L of the 
mean spherical constraint in the case of 3 - d'  fixed and d' = 1, 2 periodic 
boundaries is given by 

2 L ~ [47r/(3 - d ' )  In L]  L -2 

XL = (9(L -2) 

i f  (K-K~)L=(9(1) 

if (K-K~)L)L=(9(1) 
(4.34) 

Note that expressions (4.33) and (4.34) at d ' =  0 reduce to expressions 
(4.29) and (4.30), respectively. 

Now we are ready to study the logarithmic finite-size constributions 
to the free energy in the critical regimes (K--Kc)L=(Y(t) and 
(K- K~)L)L = @(1). 
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5. L O G A R I T H M I C  FINITE-SIZE CORRECTIONS IN THE 
FREE ENERGY 

We confine ourselves to deriving corrections in the free energy (2.13), 
(2.14) which are proportional to In L and In In L; these logarithmic correc- 
tions will be denoted by AF~)a,(K; L). Note that besides the terms which 
are obtainable directly in the desired form, in the bulk critical regime 
(K-Ko)L=(9(1), due to the logarithmic dependence of 2 = 2 L ( K )  on L, 
we have to take into account some special h-dependent terms in the 
asymptotic from of ~(~) (K" 2, L) as 2 ~ 0 and L --, oo. 6d, d'~, , 

1. In the case of free boundary conditions at d =  3 [see (4.15) and 
(4.20)], logarithmic corrections of the proper form may arise from 
h-dependent terms proportional to 

-- 3 1/2 L ()oL L ) =  ( 3 - d ' ) L  -3In L 
(5.1) 

L 3 In 2z = 2L-3(ln In L - In L) + (9(L-3) 

2. In the case of fixed boundary conditions at d =  3 [see (4.30) and 
(4.34)1, logarithmic corrections of the proper form may arise from 
h-dependent terms proportional to 

L-3(2LL2) -1 = [(3 - d')/4~z]L -3 In L 
(5.2) 

L 3 in 2L = - L - 3 ( 2  In L + In In L) + (9(L -3) 

The following observation greatly simplifies our task. Note that the 
integral 

f ~  d x x - l c - ( l + 2 ) x { 1  - - t - d [ g ( L P ) ( x ) ] d ' [ g ~ ) ( x ) ] d - d '  } ( 5 . 3 )  

is an analytical at 2 = 0 function of 2 both for finite L and in the limit 
L --, oo. Therefore, by denoting 

s.p. q~(2L, L) = singular part of ~(2L, L) at 2L = 0 

as L --* oo and 2 L --* 0 (5.4) 

we can write [see (3.5)] 

s.p. '~(~) tg.  2L, L) ,5 d, d'~, a~, 

1( r~176 e--;~LX(l__e--X){l__z--d[a(LP,(x)]d'[S(L'c)(x)]d d'}) =s .p .~  l n 2 c + j o  x 

1 a f? d Xxe-~LX(l_e-x)[skP,(x)]a'[Sk~)(x)]d-a' --s.p. ~ L -  

Qa.a'(#, e, L)]  [Pa.a'(#, e, = - s . p . ~  d~ (') �9 L ) +  (~) " (5.5) 
L 

822/71/3-4-28 
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Now we note that the 2L-dependent terms of the form (5.1) and (5.2), 
being proportional to ~1/2 In 2c, and 2 1 "L , L , are singular at 2L=0. Such 
contributions can arise only from terms divergent at # = 0, to be denoted 
by d.t., in the integrand of the integral over # in the right-hand side 
of (5.5). 

From (3.11), by direct integration and using estimates (3.12), we 
obtain 

1 

f, d# C~l~) r,,. L) ~ d , d " , t ' ,  ~, 
L 

= L-d f x  --dXexp(-a2LL2X)x [S~P)(eL2x)]d'[S(~)(eL2x)]d-d' 

+ (9(L-% -~L2) 

l 
(9(L-de -e'tLL2) if 2L L2 ~ O0 

= (9(L -d) if 2L L2=(9(1) 
{,--L-dln(2LL2)+(9(L -d) if 2LL2--->O 

(5.6) 

To proceed, we have to specify the boundary conditions. 

1. In the case of free boundary conditions it suffices to consider # ~ 0 
and #L 2 >/2L L2 --* O0. Then from (3.25) and (4.3) we obtain 

d.t. p(o)d,d '''~'t''" ~, L ) =  (2L) p d.t. Wa p(~) 
p = O  

(5.7) 

Thus, by inserting (5.7) in (5.5), performing the integration over # with the 
aid of expansions (4.5), and taking into account (5.6), we obtain for the 
logarithmic corrections of the proper form in the free energy density at 
( K -  K~)L=(9(1) 

f2--d 1 in 2L + d2-aL2~/2 d '  = 0 

AF(d~ L )= l~-dL21r/2 d' >~ = l (5.8) 

Finally, setting d =  3 in (5.8) and making use of (5.1), we get 

f ln  L + 2 -3 In in L d'  = 0 

(o) . l ~  d' 1 AF3,d,(K, L) = 2 In L = 

d'>~2 

(5.9) 
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2. In the case of fixed boundary conditions from (3.26) we have 

d.p. p(X) ~,,. L) d ,d ,~ , k%  8~ 

= ( l + L - i ) a - a '  ~ [ - 2 ( L + l ) ]  -p 
p = O  

~L 2 
xd.p. [ dxe-;~X[e-2Xlo(2X)] d-p 

~0  

(5.1o) 

Since the right-hand side of (5.10) depends on # through [see (3.17)] 

/ i = # - 5 L  
(5.11) 

6 C - 6 L ( d , d ' ) = 2 ( d - d ' )  1 - c o s  = ~ 2 ( d - d ' ) L - 2 + C ( L - 3 )  

we have, for p = 0, 1 ..... d, 

1 e L  2 

s.p. f d~ [ dxe-;~X[e-2Xlo(2X)] d-p 
).L "J O 

e L  2 

=s .p . [  dxx  l{exp[x(6L--2r)]--l}[e-2Xlo(2X)]a-P=O 
~0  

(5.12) 

because the right-hand side is regular at 2L = 0 when )eL L2--," O. Therefore, 
logarithmic corrections (to be denoted by 1.c.) may arise only from the 
2L-independent part of the integral in the left-hand side of (5.12). Indeed, 
for p = d we have 

•i 
f~L2 1 

1.c. Ld/~ o dxe ~X=l.c. fo d l ~ f i - l [ 1 - e x p ( - e p L 2 ) ] = 2 1 n L  (5.13) 

Further, for p = d -  1, 

1 aL 2 
I.e. f) @[ dxe-r'Xe-2XIo(2x) 

~L ~  

1 ~L 2 

=l.c.(4n) i/2 fo ctP [, M dx x -  i/2 e - UX 

=C(1)l.c. d#l/~l ' /2=0 (5.14) 
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for p = d -  2, 

and for p>~d-3,  

1 ~L 2 

1.c. f a d# ~ dx e-;'"[e-2XIo(2X)] 2 
L e 0  

1 f e L  2 

=l.c. (47z)-lfo d #  M d x x - l e  -~x 

1 

=l.c.(4n) ~fo d#1nlfi[-1 

= 2re(d- d')(2L) -2 In L (5.15) 

1 ~L 2 

1.c. f; d# f dx e-r'~[e-2XIo(2X)] d-p 
~L ~0 

1 
= (9( 1 ) 1.c. fo d# I•l ( d - p -  2>/2 = 0 (5.16) 

Thus, collecting the results (5.5), (5.6), and (5.10)-(5.16), for the 
logarithmic corrections of the proper form in the free energy at 
( K - K c ) L  = (9(1) we obtain 

AF~al,)o(K; L ) =  - [ 1  + rcd2(d - 1)/2](--2)-d In L + 2 -1 ln(2LL 2) (5.17a) 

AFfiX(K; L)= -re(d-  t ) 2 ( - 2 )  -a  In L + 2 1 ln(2cL 2) (5.17b) 

AF~al,)2(K; L) = - r r (d-  2)( - 2) -d In L + 2 -1 ln(2LL2) (5.17c) 

and 

AF~I,)a,(K; L) = 2-1 ln(2rL2), d'~> 3 (5.17d) 

Finally, setting d = 3  in (5.17) and making 
(K-Kc)L=(9(1)  

use of (5.2), we get at 

2-3(1 + 9re) In L -  2 1 ln ln  L d ' = 0  

AF~I,)d,(K; L ) =  ~2-1rc In L -  2 -11n In L d ' =  1 

[,2-3n In L - 2 -~ In in L d' = 2 

(5 .18)  

3. Next we consider the case of free boundary conditions in 
shifted critical regime ( K -  ~"(~ when 2L=(9(L-2).  Now the 

logarithmic corrections of the proper form may arise from 2L-dependent 
terms in the right-hand side of (5.5) proportional to 

L -d In 2 L = --2L-d In L + (_9(L -a) (5.19a) 

L-a+22 L In 2 L = --L-d(2L L 2) In L + Cg(L -a) (5.19b) 
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The term (5.19a) arises after the integration over # of W0(#)=/z -~ 
[see (5.7)], and already has been taken into account in (5.8); the term 
(5.19b) is due to the weak singularity of W2(#) [see (4.5)], 

1.c. f d# W2(#)=(4rc)-ll.c. d#1n#-~=(4rc)-12Lln2i. (5.20) 
~L ~L 

Thus, from (5.5)-(5.8) and (5.20) we obtain 

( - [ 1 - d ( d - 1 ) ( 2 r c ) - ~ 2 L L 2 ] 2 - a l n L  d ' = 0  
) ( d -  1)2-az - ' 2LL 2 In L d ' =  i 

d F(ae. la,( K; L) 
, t20 drc-12rL21nL d'=2d,~>3 

(5.21) 

4. Finally, we consider the case of fixed boundary conditions in the 
shifted critical regime (K-t,-(1)~r = (9(1). Now 2L and 6c [see (5.11)] are ~ c , L ) ~  
of the same order of magnitude, O(L 2). One readily verifies that (5.13), 
(5.14), and (5.16) still hold, while (5.15) changes to 

1 eL 2 

1.c. ;)~ d~ ~ dx e-•X[e-2Xlo(2X)] 2 
L ~0  

= 1.c.(4~) -1 d#ln I~1-1 
2L 

= 1.C.(4~Z)-I~L In I~LI = --(2zc)-l~r In L (5.22) 

where ~'L 
obtain 

= 2 c - 6 L  [see (3.17) and (5.11)]. Therefore, in this regime we 

( - [1-d(d-1) (2~z) - l"2LL~-]( -2) -d lnL d ' = 0  
, ) ( d - 1 ) ( - 2 ) - a r c  I~LL21n L d'= l 

A F(al' )a'( K; L ) = t (O-- 2 ) -a rc - I "~ L L 21n L d .~. = >- 

(5.23) 

The structure of the logarithmic corrections now parallels that for free 
boundary conditions in the corresponding shifted critical regime [compare 
(5.21) and (5.23)]. 
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6. D I S C U S S I O N  

We have shown that the logarithmic finite-size corrections in the free 
energy of the three-dimensional mean spherical model depend on the type 
of the critical regime: there is a bulk critical regime when 

xl =- ( K - K ~ ) L =  (9(1) (6.1) 

and a shifted critical regime when 

x l -  (K--  (~) - K~,L)L-  (9(1) (6.2) 

where the shifted critical coupling ~(~) [-see (4.18) and (4.33)] depends on XXc, L 

the boundary conditions. To compare with our previous results ~9) con- 
cerning the case of free boundaries, we note that the finite-size correlation 
length ~L(K) is related to the solution 2 = 2L(K) of the mean spherical 
constraint (2.18) by 

~L(K) = [-2L(K)] -1/2 (6.3) 

Hence Eq. (5,8) coincides with (1.5) and (1.6) in the bulk critical regime, 
when L/~L~ ~ [-see (4.20)]. This is the result corresponding to the 
short-block limit considered by Gelfand and Fisher (5'6) for the Gaussian 
model. The total logarithmic contribution (5.9) has been divided (9) into a 
contribution from the corners, proportional to In 2L, 

AF~~ L) = - 2 - 3  In L + 2 -3 In in L (6.4) 

and a contribution from the edges, proportional to L))/2, 

)'(9/8) In L d' = 0 
AF~~ L) = ((1/4) In L d ' =  1 (6.5) 

Note that the contribution per edge depends on d' = 0, 1 since 2L does [see 
(4.15), (4.20)]. 

Unexpectedly, in the shifted critical regime (6.2) there ,are logarithmic 
finite-size contributions which arise from two-dimensional surfaces [see 
(5.20)]. However, now there are no logarithmic edge contributions of 
the considered form, since L2~/2= (9(1). Thus we can distinguish between 
contributions from the corners, proportional to In 2L, 

AF~~ L ) =  - 2  -3 In L (6.6) 
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and from the surfaces, proportional to 2 L In 2L, 

((3/8~)2L L2 In L d ' =  0 
! 

AF~~ L) = ~(1/4n)2LL 2 In L d ' =  1 (6.7) 

((1/8~)2LL21nL d ' = 2  

A characteristic feature of the surface contributions (6.7) is that the 
amplitude of the In L term depends on the scaled temperature variable 
(6.2) through the factor 2LL 2. 

The bulk critical regime of the model with fixed boundaries 
corresponds to the long-block limit, L / ~  L -+ 0(3 [see (4.34) and (6.3)]. In 
this case there is a double logarithmic term proportional to ln(L/~r) [see 
(5.6) and (5,18)] which has no transparent geometrical origin; it persists 
with constant amplitude in all geometries with fixed surfaces (d'~< 2): 

AF~',~)(K; L ) =  - 2 - 1 1 n  In L (6.8) 

Apart from the term (6.8), one may classify the logarithmic finite-size 
contributions as due to corners [see (5.10) and (5.13)], 

AF~IbC)(K; L) = 2 -3 In L (6.9) 

and two-dimensional surfaces [see (5.10) and (5.15)], 

( (9g/8)  In L d'  = 0 
/ 

AF~I'ds,)(K;, L )  = ~ (~z/2)In L d ' =  1 (6.10) 

( (~/8)  In L d' --- 2 

Logarithmic edge contributions are absent [see (5.10) and (5.14)]. 
In the shifted critical regime there is no double logarithmic term of the 

type (6.8) [see (5.6)]. The logarithmic contribution from the corners is the 
same as (6.9), and the one due to surfaces [see (5.10) and (5.22)] is 

{ -(3/8~)~LL21nL d ' = 0  

AF~J)(K; L)= -(1/4g)~LL 2 In L d ' =  1 (6.11) 

-(1/8n)~LL21nL d ' = 2  

The amplitudes of the In L terms depend on the scaled temperature 
variable (6.2) through the factor ~L L2. 

In conclusion, we point out that the results (6.4), (6.6), and (6.9) con- 
firm the hypothesis for universal amplitudes of the logarithmic size correc- 
tions due to corners. These amplitudes are independent of the choice of the 
critical regime, but depend on the boundary conditions. Not  predicted by 
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finite-size scaling arguments is the appearance of double logarithmic terms 
[-see (6.4) and (6.8)] in the bulk critical regime. The generality of our 
results about the universal amplitudes of the logarithmic contributions 
stemming from edges [see (6.5)] or surfaces [see (6.10)] in the bulk 
critical regime needs further investigation. 
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